学科专业名称
|
070100 数学(基础部)
|
|
学 术 职 衔
|
硕士生导师
|
|
导 师 姓 名
|
胡贝贝
|
|
所获最高学位及单位
|
博士、上海大学
|
|
职 称
|
副教授
|
|
工 作 部 门
|
滁州学院 数学与金融学院
|
|
联 系 电 话
|
17355006780
|
|
电 子 邮 箱
|
hu_chzu@163.com
|
|
研 究 方 向
|
孤立子与可积系统
|
|
学习及工作经历
|
||
(1) 2016-09 至 2019-06, 上海大学, 应用数学, 博士
(2) 2010-09 至 2013-06, 桂林电子科技大学, 应用数学, 硕士
(3) 2006-09 至 2010-07, 安庆师范大学, 数学与应用数学, 学士
(4) 2013-07至 今, 滁州学院, 数学与金融学院, 专任教师
|
||
进修及访学经历
|
||
(1) 2020-12 至 2023-04, 浙江师范大学,博士后
|
||
承担科研项目情况
|
||
1、安徽省2024年高校中青年教师培养行动项目:学科(专业)带头人培育项目(No.DTR2024046),2024年9月27日,皖教工委函〔2024〕317号,10万元,主持。
2、国家自然科学基金:几类非局域可积系统的Riemann-Hilbert方法(No.12147115),国家基金委,2021年11月25日,18万元,主持。
3、中国博士后科学基金:非局域可积系统的Fokas 统一变换方法(No.2022M712833),中国博士后科学基金委,2022年7月1日,8万元,主持。
4、安徽省自然科学基金青年基金项目:基于Riemann-Hilbert方法的可积系统若干问题研究(No.2108085QA09),2021年8月20日,皖科基奖〔2021〕14号,10万元,主持。
5、安徽省教育厅自然科学研究重点项目:非局部可积模型及其Riemann-Hilbert问题研究,(No.KJ2021A1094),2021年12月24日,皖教秘科〔2021〕104号,6万元,主持。
|
||
申请专利情况
|
||
无
|
||
近五年发表论文、著作情况
|
||
[1] Hu Beibei, Zhang Ling, Xia
Tiecheng, Zhang Ning. On the Riemann-Hilbert problem of the Kundu equation. Applied Mathematics and Computation,
381 (2020) 125262. (SCI)
[2] Hu
Beibei, Zhang Ling, Zhang Ning. On the Riemann-Hilbert problem for the
mixed Chen-Lee-Liu derivative nonlinear Schr?dinger equation. Journal of Computational and Applied
Mathematics. 390 (2021) 113393. (SCI)
[3] Hu Beibei, Zhang Ling, Xia
Tiecheng. On the Riemann–Hilbert problem of a generalized derivative
nonlinear Schr?dinger equation. Communications
in Theoretical Physics, 73 (2021) 015002. (国内SCI)
[4] Hu
Beibei, Zhang Ling, Li Qinghong, Zhang Ning. Riemann-Hilbert Problem
Associated with the Fourth-Order Dispersive Nonlinear Schr?dinger Equation in
Optics and Magnetic Mechanics. Journal
of Nonlinear Mathematical Physics. 28 (2021) 414-435. (SCI)
[5] Hu
beibei, Zhang Ling, Fang Fang, Zhang Ning. Riemann-Hilbert approach for a
mixed coupled nonlinear Schr?dinger equations and its soliton solutions. Journal of China University of Science and
Technology, 2021, 51(03):1 96-201. (CSCD)
[6] Hu
Beibei, Lin Ji, Zhang Ling. Dynamic behaviors of soliton solutions for a
three-coupled Lakshmanan-Porsezian-Daniel model. Nonlinear Dynamics, 107 (2022) 2773–2785. (SCI)
[7] Hu
Beibei, Yu Xiaomei, Zhang Ling. On the Riemann-Hilbert problem of the
matrix Lakshmanan-Porsezian-Daniel system with a 4×4 AKNS-type matrix Lax
pair. Theoretical and Mathematical
Physics, 210(3):
(2022) 337-352. (SCI)
[8] Hu
Beibei, Lin Ji, Zhang Ling. On the Riemann-Hilbert problem for the
integrable three-coupled Hirota system with a 4×4 matrix Lax pair. Applied Mathematics and Computation, 428
(2022) 127202. (SCI)
[9] Hu
Beibei, Zhang Ling, Lin Ji. The initial-boundary value problems of the
new two-component generalized Sasa-Satsuma equation with a 4× 4 matrix Lax
pair. Analysis and Mathematical Physics, 12 (2022) 109. (SCI)
[10] Hu Beibei, Lin Ji, Zhang Ling. Riemann-Hilbert
problem associated with the vector Lakshmanan-Porsezian-Daniel model in the
birefringent optical fibers. Mathematical Methods in the Applied Sciences, 45(17) (2022) 11545-11561.
(SCI)
[11] Hu
Beibei, Zhang Ling, Lin Ji Wei Hanyu. Riemann-Hilbert problem for the
fifth-order modified Korteweg-de Vries equation with the prescribed initial
and boundary values. Communications in Theoretical Physics, 75 (2023) 065004
(国内SCI)
[12] Dong Fengjiao, Hu Beibei, Li Qinghong. Riemann-Hilbert problem associated with
an integrable generalized mixed nonlinear Schr?dinger equation, Complex Variables and Elliptic Equations,
69(7) (2024) 1097-1116. (SCI四区,通信作者)
[13] Hu
Beibei, Zhang Ling, Shen Zuyi, Fang Fang. Riemann-Hilbert approach to the
focusing and defocusing nonlocal derivative nonlinear Schr?inger equation
with step-like initial data, Applied Mathematics Letters 148 (2024) 108885. (SCI)
[14] Zhang Ling, Hu Beibei, Shen Zuyi. Riemann-Hilbert approach to the focusing
and defocusing nonlocal complex modified Korteweg-de Vries equation with step-like
initial data. Journal of Mathematical Physics, 65 (2024) 013507. (SCI三区,通信作者)
[15] Li Yan, Hu Beibei, Zhang Ling, Li Jian. The exact solutions for the
nonlocal Kundu-NLS equation by the inverse scattering transform. Chaos,
Solitons and Fractals 180 (2024) 114603. (SCI一区)
[16] Wang Qing, Zhu Junying, Wang Jun, Yu
Haiyan, Hu Beibei. Controllable
trajectory and shape of Hermite-Gaussian soliton clusters. Chaos, Solitons
and Fractals 180 (2024) 114580. (SCI一区,通信作者)
[17] Hu Beibei, Shen Zuyi, Zhang Ling, Nonlocal
Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy
problem with step-like initial data. Letters in Mathematical Physics 114
(2024) 55. (SCI)
[18] Hu
Beibei, Zhang Ling, Shen Zuyi, Nonlocal
combined nonlinear Schr?dinger–Gerdjikov–Ivanov model: Integrability,
Riemann–Hilbert problem with simple and double poles, Cauchy problem with
step-like initial data. Journal of Mathematical Physics, 65 (2024) 103501. (SCI)
[19] Hu Beibei, Zhang Ling, Shen Zuyi, Lin
Ji, On a Riemann-Hilbert problem for the reverse space-time nonlocal Hirota
equation with step-like initial data. Communications in Theoretical Physics, 77 (2025) 025004 (国内SCI)
[20] Shen Zuyi, Hu Beibei, Zhang Ling, Fang Fang. The unified transformation approach to higher-order
Gerdjikov-Ivanov model and Riemann-Hilbert problem, Journal of Mathematical
Analysis and Applications, 541 (2025) 128681. (SCI,学生第一作者)
[21] Hu
Beibei, Guan Xinru, Zhang Ling. Riemann-Hilbert
approach to a new integrable nonlocal fifth-order nonlinear Schr?dinger
equation with step-like initial data, Applied Mathematics Letters, 167 (2025)
109557.
|
||
获奖及个人荣誉
|
||
1、全国(2015年)首届高校数学微课程教学比赛华东赛区二等奖、安徽赛区二等奖
2、安徽省(2020年)级教坛新秀
3、安徽省(2021年)第五届高校青年教师教学基本功竞赛理科组 三等奖
4、安徽省青年拔尖人才青年学者,2024年
5、滁州学院 琅琊学青年者,2022年
|
||
社会兼职情况
|
||
安徽省工业与应用数学学会 理事
|
||
指导研究生情况
|
||
已指导毕业研究生人数
|
博士:0,硕士:0
|
|
正在指导研究生人数
|
博士:0,硕士:0
|
|
所指导研究生获奖情况
|
无
|
|
承担研究生课程名称
|
无
|
|